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ABSTRACT

The elements of a theory for elastic composites
with a changing microstructure. such as microcracking,
are reviewed. This formulaticn, which uses internal
state variables and potentials like strain energy and
work, is then illustratec by mathematically
characterizing and predicting the damage and
deformation behavior of particia-filled rubber under
axial straining and confining pressure, Next, a
micromechanical model, which accounts for effects of
distributed microcracks and particles on overall
deformation behavior, is described and shown to be in
agreement with experimental findings. It is then
indicated how this model may be combined with the
potentia)l theory to extend the results from specimens
under axial straining and pressure to more general
strain states.

NOMENCLATURE

a,b,R Radii in model composite
Aij' Bij Moduli
Cij Coefficients in dual energy
E  Young's modulus GPa (1b/in?)
f Thermodynamic force
p Pressure GPa (1b/in2)
qj Generalized displacement
Qj Generalized force
Structural parameters
uj Displacement
v, &y Dilatation
v, V Vo lume
W Strain energy
Wi, Wp Total work and dual work

€ Strain
v Poisson's ratio
o Stress
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1. INTRODUCTION

In this paper we wuse a theory based on
thermodynamics with internal state variables
(Schapery, 1990a) to characterize and then predict
mechanical behavior of a highly-filled rubber with
distributed microcracks. A similar study of fiber-
reinforced plastic is reported elsewhere (Schapery,
1989a). The previously developed micromechanical
model  (Schapery, 1986) serves to guide the
thermodynamic formulation for general stress states
and to 1identify the physical significance of the
internal state variables. The effect of individual
particles and microcracks is smeared out in that the
composite is represented as a homogeneous continuum on
a scale that is much larger than particle and crack
sizes. This type of idealization is basic to the many
studies in “continuum damage mechanics"; see, e.qg.
Krajcinovic and Lemaitre (1987). However, the
underlying thermodynamic formulation (Schapery, 1990a)
is not limited to this idealization.

The nonlinear behavior of filled rubber, such as
solid propellant, tires and numerous other commercial
rubber products, has been studied extensively over
many years. Large strains (Swanson, 1983), vacuole
(or crack) formation and growth (Farris, 1968),
viscoelasticity (Schapery, 1982), and the Mullins'
effect in wunloading behavior (Mullins, 1969) all
contribute to the complex behavior of solid
propellant, wnich is the material that is used here to
illustrate the damage theory. In this paper we
account for only nonlinearity of stress-strain
behavior during Tloading. Viscoelasticity and the
Mullins' effect may be incorporated using the approach
described in other papers (Schapery, 1982, 1990a). In
contrast to plasticity theory, nonlinear behavior
during loading is not necessarily tied to residual
(plastic) strains or other behavior associated with
unloading; this point s i{llustrated by Schapery
(198%a) for fibrous composites.

In Section 2 we summarize the primary results
from the thermodynamic theory (Schapery, 1990a) which
is expressed in terms of an arbitrary number of
independent generalized displacements and internal
state variables. Characterization of the behavior of
solid propellant subjected to confining pressure and
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axial stretching serves in Secticn 3 to illustrate the
theory when one internal state variable is sufficient
to account for the damage. An elementary model of
microcracking is wused in Section 4 to connect the
internal state variables to the microstructure. It
should be noted that Sections 3 and 4 describe and
expand upon earlier work by Schapery (1986, 1987a).
In Section 5 this model is used to generalize results
for axisymmetric loading to a general strain state.

2. ELASTIC BEHAVIOR WITH CHANGING MICROSTRUCTURE

We consider an elastic structure or material
whose thermodynamic state is a function of independent
generalized displacements q-(j = 1,2,....d) and
internal state variables S (m = 1,2,...M) as well as
temperature or entropy; 1ne?ast1c pehavior arises from
changes in the S.. Generalized forces QJ are defined
in the usual way in that

W' = Q.éq (j not summed) (1)

J
far earh virtual displacemcint (55, wiere ow 1S tne
virewas work. Then, from thermodyﬂamlcs

Qj= aN/aqj (2)

where W is the Kelmholtz free energy {when temperature
is used as an independent state variable) or the
internal energy (when entropy, instead of temperature,
is an independent variable). For brevity, thermal
effects will not be considered here, and therefore we
shall refer to W simply as the strain energy. The
generalized displacements q; may be, for example, the
uniform strains in a matérial element and Q; the
conjugate stresses, or q and Q; may be, respect?vely,
the displacements and fo ces applied to a structure.

The 1internal state variables serve to define
changes in the structure such as micro- or macro-
cracking, and arE called structural parameters.
Whenever any one mxo. we specify as the evolution
law,

f= AW /23S, (3)

is a state function of one or more

where W, = W (S
Qhe thermodynamic force,

Smy alsa, fy

foz - aW/aS, (4)

The left side of eguation (3) is the available force
for producing changes in S,, while the right side is
the required force. For any specific set of processes
(i.e. histories J(t)). equation (3) may not be
satisfied by some of the parameters; if it is not,
those S will be constant. The subscript r or p will
henceforth be used in place of m to designate the
parameters that change, which are taken to be R in
number.

The tota! work done on the body by QJ during an
actual process (i.e., a process for which” parameters
change in accordance with equation (3)), starting at
some reference state, is denoted by Wp,

Wez f 0;dq (5)

where the summation convention for repeated indices is
used. From equations (2)-(5) we find that W; is a
function of the state (q4, Sy), and is given by

W.=

= W (6)

where W = 0 in the reference state. Thus, W, may
be 1nterpréied as that portion of the total worx Wy
which contributes to changes in the structure.

The second law of thermodynamics provides an
inequality as a constraint on the changes in state,

W=T5S 20 (7)

where T is absolute temperature and $' is the entropy
production rate. Even if eguation (3) is satisfied
for any one Sr' Lhis inequality may not allow it to
change. Additionally, instantaneous values of the S,
are such that they minimize the total wurk when the
body passes through stable states; i.e.,

oW /25 = 0 (8)
(e Wilel, aSp)éerSp >0 if 65'_65r >0 (9)

It should be emphasized that minimum total work
i$ a necessary and sufficient conditinn for
ctability. 1n contrast, mimimum W, rather thar Wy, is
equivalent to the stability condition for systems in
the neighborhood of equilibrium states, according to
classical thermodynamic theory. When + 0 and
equation (3), with f_: 0, governs changes s _, the
system is npot in the neighborhood of eQui11%r1um.
regardless of how slowly processes occur, the total
entropy production wS/T between any two states is the
same.

It is observed that equation (3) represents R
equations for finding the Sr as functions of g
Then, Wy = Wy(q;,S (q where the S are tﬂe
constant parameters. om (huat1on (5},

Qj= aNT/aqj (10)

showing that the body exhibits hyperelastic behavior
during the time any particular set of parameters S

undergoes change. Because the iotal work s a
potential during inelastic (and elastic) processes,
the incremental stiffness matrix is symmetric.
Conversely, given that the stiffness matrix is
symmetric when one or more S. change, then both
equations (3) and (10) follow.

If forces act on crack faces they have to be
included in the set Q; unless they are due to contact
without dissipation ( §11ding without a shear traction
or no sliding); in the latter cases, the effect of
crack opening and closing may be taken into account
through the form of the strain energy function,
$1iding with Coulomb friction, if significant, camnot
be accounted for through a work potential, and
therefore the stiffness matrix is not necessarily
symmetric during processes involving crack face
sliding. If, however, one can use a potential to
characterize the relationship between crack-face
forces and relative displacements between crack faces,
equation (10) may be extended to - this case by
including this surface potential (which may depend on
additional structural parameters) in Wr. Such a
simplification is applicable with surface free-energy
effects (Schapery, 19902); also, it was proposed by
Schapery (1989b) to account for crack-face friction in
ice under compression.

In the next section we illustrate the use of the
theory by combining it with experimental! results on
solid propellant. One structural parameter (internal
state variable) S appears to be sufficient to
characterize the damage state for the particular
axisymmetric loading used. For this case we may take
S = Wy without loss in generality. Then from




equations (3) and (4), when § : 0,

W

35 -1 (11)
and from equation (7),

L] .

S0 (12)

3. A SPECIMEN UNDER AXIAL EXTENSION AND PRESSURE

Consider a cylindrical bar (not necessarily with
a circular cross-section) which is subjected to
specified axial displacement U and all-around pressure
p. As generalized displacements select

= = A\
q,= U/L0 .9 AJ/V0 (13)
where &V = volume change (>0 for an increase), L, =
initial axjal length, and V, = initial volume.
fquation (1) yields

Ql= Fl/AO ' QZ= -pP (14)

where Fl is the axial force above that due to the
pressure; 0 wher the only loading is due to p.
Equations 813) and (14) are not limited to small
strains. Let us now replace the generalized notation
by engineering stress and strain notatisn, in which

€ = ql. vz q2- 0 = Ql (15)

Note that v is the dilatation.
With the strain energy density W = W(e,v,S),
equation (2) becomes

o = aW/3e, p = -aW/av (16)

Inssmuch as ¢ and p are given quantities in this
example, it is helpful to rewrite the theory so that
they appear as the independent variables. For this
let us introduce a dual strain energy density Wy =
Nd(c,p.S) defined by

Ndz W+ pv (17)
The total differential of Eg. (17) is

Wy Wy L
rd“'p—dp*wds

= 3— de + — dv + pdv + vdp + 35 dS (18)
From equations (16) and (18),

o= awd/ac s V= awd/ap , AW/aS = awd/aS (19a)

and from equation (11) when § = 0,

aHd/aS = -] (19b)
The total dual work is defined by
Hsz W+ pv (20)

so that from equation (5),
Wig= fode + [vdp (2la)

and then using equation (6} and W, = S,

Npg= Wy S (21b)

Td
This reformulation of the basic theory, in which the
independent variables are a mix of strain and stress
variables, is covered in the more general earlier work
by Schapery (1990a) using an arbitrary number of
generalized forces and displacements; it is shown that
wTd' just as Wy, is a minimum with respect to Sp at
each stable state.

Equations (19) and (21) will be used with some of
the experimental data in fFig. 1 to obtain Wq, and then
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Fig. 1 Stress and dilatation behavior of a filled
elastomer (65 volume percent) at four con-
fining pressures. Experimental data from
Farris (1968).

we will predict the stress and dilatation responses
not used in the characterization process. In each
test a constant pressure was applied and then the
sample was strained at a constant rate to failure. It
is to be observed that the stress-strain curves are
essentially independent of pressure when the strain is
sufficiently small. In the strain range for which the
stress-strain curves are the same, the dilatation v is
essentially zero. The dilatation in Fig. 1 is
actually that due to the stress o and does not include
the very small amount due to the pressure alone. At
the highest pressure there is very little dilatation,
and therefore we shall assume for purposes of curve
fitting that 5=0 (undamaged material) in this case.

Determination of constitutive functions

As a start on determining Wys let us expand it in
a power series in ¢ and p and drop terms which are
higher than second order,

Hg= e+ CoP + 5 €11t 3 Cppb + Cppep (22)

where the coefficients are, in general, functions of
S. From equation (19a),

O = Cy* Cppe * CpoP,y VS Gyt Clae * CooP (23)

Regardless of the value of S, we assume o = v = 0 when
= p =0, and therefore €] = cp = 0. Equation (23)

does not account for the small amount of nonlinearity

in the stress-strain curve at p = 500. We shall

account for this nonlinearity by replacing ¢ in

equation (22) by

€

f=fle)zgf ogdc (24)

mino




where o, is the stress for p = 500 and E is the
initial “slope of the stress-strain curve; note Qat
for the linear case og= Ee', and thus f = ¢ .
Equation (22) becomes

o Y2
We= 3 C1if * 5 CoP * Cppep . (29)

Equation (19a) yieids,
(o]

o = Cll% + CIZD . v = CIZC + szp (26)

Inasmuch as dilatation due to microcracking is never
negative and thece is no pressure dependence of the
stress when v=0 (cf. Fig. 1), we set Cpp = Cjp = 0
whenever equation (26) predicts v<O.

The three functions of S in equation (26), i.e.
Cj 3 will be found by using the experimental data in
F1a. 1 from the tests at the two lowest pressures.
Specifically, we shall fit v in equation (26) to the
two dilatation curves and fit o to tne stress-strain
curve at the lowest pressure. However, this process
gives us coefficients that depend on ¢, not S. In
order to find their dependence on S, we first solve
equation (21) for S,

2

2
S = Wygm Wy =lf ode +1f vdp - W (27)

d
where state 1 s ¢ = p =S5 =0 and state 2 1is the
current strained and pressurized state. It is assumed
that equation (19b) 1is satisfied when ¢ 2 Q, and
therefore it gives us S = S(c,p). This means Wyy is
independent of path when ¢ 2 0, soO that we may
integrate between state 1 (e=0, p=37) and state 2
(e,p) by going from (0,0) to (O,p) and then from (O,p)
to (e,p). The dilatation is (essentially) zero when
e=0, and thus there is no contribution from the vdp
term. Equation (27) becomes

S = fiodc' - W (28)

d
o
where o is the stress at pressure p and strain ¢';
hence, the integral in equation (28) is simply the
area under the stress-strain curve in Fig. 1 for each
pressure. The dual energy, equation (25), may be
rewritten as

c o
Hg= gloc + vp) + (F - ¢) (29)

It is seen from equations (28) and (29) that S
can be found directly from the experimental data at
each pressure in Fig. 1, except for cy; (which depends
on S). The approach we used to determine S was to
start with cqq = E in equiiion (29), and then find 9;1
in terms of {Ais S, say S$'*/; an improved S, say S( N
wailfhen found by using the previously derived c;
(S'* /)i equation (29). Further iterations produceé
no further change in § and cyy. For each S, all three
coefficients cyy, Clo» Gy were derived using equation
(26) for two pressure levels. Namely, for pressure p
= 15 data for both o and v were used; introducing the
subscript a, we may write for this pressure,

[}

%" C1TE * C12Par YaT St t 2P (30)
For a second pressure, Py = 65, use only v,
b= C12° * C22Pp 31)

Recall that o, is a function of only ¢, and that the
coefficients dre functions of only S. By neglecting

Py in a first approximation, cy] and c), were obtained
directly from equation (30) and the data, and then
they were expressed in terms of S using equation
(28). Finally, equation (31) together with S for p, =
65 yielded Cy5, as Cyp(S) was known at this stage.
The coefficients were recalculated by using p, = 15
and the first approximations for €12 and ¢y In the
second terms in equation (30). Convergence was
achieved with three iterations. lhe iterative process
described earlier for S used the third approximation
for i1 with each iteration. It is not really
necessary to use iterations to find c;;; we could have
found all three coefficients by simu1eaneous solution
of equations (30) and (31) with p, = 15, but it would
have been necessary to interpolate with respect to ¢
since the same value of S has to be used in both
equations.

Figure 2 shows the coefficients as functions of
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Fig. 2 Coefficients in equation (26) for E = 400 psi
(2.76 MPa).

the structural parameter over the S-range found from
the experimental data. Low-order  Chebyschev
polynomials were used to obtain an analytical
representation for each coefficient. Second order was
used for ¢y and ¢y, and third order was used for CZ%;
however, ﬁ14éhe case of Cy1s the expansion was in
terms of S¥° instead of S.

It should be noted that the results are not
limited to small strains, in that they are based on
experimental data out to ¢ = 0.55. However, if the
geometrically linear expression for dilatation is used
to calculate transverse strain e,., i.e. 2e.+ ¢ = v,
we find the Poisson's ratio for ﬁn unpress&rized bar
to be simply related to €129

vz -ct/: = (1 - Clz)/2 (32)

where v = Cype has been used; from Fig. 2, v =0.5 at
S=0and v = 0.36 at S = 10.

Prediction of the mechanical state

Having found the coefficients in W,, equation
(25), we shall now predict, S, o, and v gy means of
equation (26) and the growth equation for S, equation
(19b), i.e.

1% . 1% 2, %52

235 el P YE

for each (e,p) we may solve equation (33) for S by the
Newton-Raphson method.

Figure 1 shows the theoretical predictions using
continuous lines. Recall that the stress for p=15 and

ep = -1 (33)




dilatation for p=15 and p=65 were used in curve-
fitting the coefficients. The small discrepancy
between theory and experiment for these cases is due
to the use of low order polynomials for €yt however,
use of higher order polynomials was founa to produce
less smooth curves (not making a special effort to
reduce the roughness) and this, in turn, lead to
convergence problems in solving eguation (33).
Prediction of dilatation for p=165 and 500 is
excellent, and the stress predictions are quite
good. It should be added that the original
experimental data were not available to us. Rather it
was necessary to take values from the curves in
Farris' (1968) publication, which is probably the main
source of the difficulty in refining the curve fitting
cf Ciie

‘Yhe source of the error in stress predictions for
p>15 is at least due in part to the fact that the data
do not satisfy exactly the condition for existence of
a work potential, regardless of the number of
structural parameters which are used. This condition
may be found by differentiating the two relations in
equation (19a),

3V _ 30
3 ap (34)
Integration yields,
3 [ %
v == ode! (35)
P

showing how dilatation can be predicted by
differentiation of the area under the stress-strain
curves. This relationship is not fully satisfied oy
the experimental data in Fig. 1; in earlier work, the
existence of a work potential was explicitly checked
using a less direct but equivalent relationship based
on equation (16) (Farris, 1968 and Schapery, 1987p).
The relative error in equation (35) is about the same
as in Fig. 1 for stress predictions, and thus the
latter error does not appear to be due to the use of
only nre structural parameter. Viscoelasticity, which
is neglected here and in these earlier studies, may be
at least partly responsible for the discrepancy, and
thus for the difference between theory and experiment
in Fig. 1; a method of accounting for viscoeiasticity
is discussed elsewhere (Schapery, 1990a,b}.

Finally, it should be noted that Farris (1968)
employed p=15 to designate atmospheric pressure, and
thus used absolute pressure in characterizing the
material behavior. We examined the effect of using
gage pressure for p (so that the pressures in Fig. 1}
are taken as 0,50,150, and 485), and found essentially
the same results as shown for the theory in Figs. 1
and 2. When the characterization based on absolute
pressures was used to predict the stress for p = 0, at
¢ = 0.55 this stress was found to be 8 percent less
than the stress for p = 15,

4. A MODEL FOR MICROCRACKING

In an earlier study (Schapery, 1986) developed a
mathematical model for axisymmetric deformation
behavior of a random particle-reinforced rubber (or
any other relatively soft, incompressible matrix) with
microcracking; changes in the microstructure were
assumed to be entirely due to microcracking. Emphasis
was on thc micromechanics of & material which is
linearly elastic for any given state of damage,
although some effects of intrinsic  material
noniinearity, viscoelasticity and microcrack growth
were studied. Here we shall briefly describe the
microstructural geometry and two different methods of

using it in predicting overall constitutive
functions. The model will then be used to provide a
micromechanical interpretation of the behavior
discussed in Section 3 and to guide the development of
a procedure that accounts for  deamage-induced
anisotropy in more general stress states than the
axisymmetric state employed in the characterization

process.
For a recent evaluaticn of micromechanical models
of linear elastic moduli without cracks, see

Christensen (1990). Included is a study of the
limiting behavior of composites with an incompressible
matrix and a high filler volume fraction, (So1id
propellant typically consists of 65-80% volume
fraction of essentially rigid particles in a matrix
with a Poisson's ratio very close to 0.5, and thus
this limiting behavior is of interest to us.) For the
so-called generalized self-consistent method (GSCM)
without cracks, Christensen (1990, Table 1) gives the
ratgo of composite-to-matr’ . shear modulus as 27/16(1-
v , where v =1 is the particle volume fractior.
FBr consisten with Schapery's (1986) result, the
numerical factor should be 27/4 instead of 27/16; in a
communication with Dr. Christensen it was confirmed
that 27/4 is the correct value.

Geometry of the microstructure. Analysis methods.

In one case discussed by Schapery(1986) the
random microstructure for a material like solid
propellant is idealized as illustrated in Fig. 3; see

)\ EFFECTIVE MEDIUM

WITH CRACKS

EFFECTIVE MEDWM
WITHOUT CRACKS

Fig. 3 Geometry for the generalized self-consistent
method with microcracks.

Cornwell and Schapery (1975) and Schapery (1986) for
SEM photomicrographs of solid propellant, Each
particle 1is assumed to be rigid, spherical (with
radius a), and surrounded by a incompressible rubber
shell of constant thickness, b-a. A high volume
fraction of filler is assumed so that (b-a)/b<<l.
Outside of this two-phase sphere is an effective
medium with the (unknown) properties of the random
particle composite. One or two axisymmetric cracks
are in the rubber shell; their surfaces are concentric
with the particle surface, may be within the rubber or
at the interface, and have sizes defined by polar
angles 8, and 8.

The composgte model in Fig. 3 is subjected to
outer boundary displacements at r>>c which correspond
to those for a uniform strain field. Namely, the
displacement components u; referred to an orthogonal
set of (artesian coordinates x; are, for the far-
field,

(1.3 = 1,2,3) (36)




where €4 £4; are the components of a spacewise
constant %tra%% tensor; the summation convention is
used here and in what follows in that repeated indices
are to be summed over their range. (This displacement
representation is valid for a completely generai state
of small or large strains.)

In the generalized self-consistent method (GSCM)
of predicting linear elastic moduli, the strain energy
of the body in Fig. 3 is equated to that of a
hrmogeneous body having the unknown effective
moduli. By doing this without cracks and then with
cracks, the moduli may be found from the set of
equations arising from the strain energy equalities.

In the second method, the displacements in
equation (36) are imposed directly on the surface r=b,
and the strain energy is calculated. This energy is
then equated to that for a homogeneous body with the
unknown effective moduli; the equality yields
expressions for finding the moduli. Without cracks,
the second method provides an upper bound to the shear
modulus for Hashin's (1962) composite spheres
assenblage., He assumed that there is a broad enough
distribution of radii b that the composite spheres fit
together to form a continuum; we make the same
assumption here.

Discussion of results

We have used both methods for axisymmetric
straining, going beyond the work reported by Schapery
(1986) and obtained the same qualitative results and
similar quantitative results for the two sets of
moduli, all as functions of the crack surfac~ area.
Figures 4 and 5 give the predictions of these two
methods for the elastic coefficients defined by
equation (26), but with ale replaced by ¢. We used

1 T T ™ T —/
|
Cii/E —— ONE CRRCK
.8+ ——- THO CRACKS
s+
.4 % j
2 L Cl12 === 3
e T T T -C22%E
a 1 1 i
e 2 4 6 8 10

STRUCTURAL PARAMETER, S (PSI)

Fig. 4 Elastic coefficients from the generalized
self-consistent method with c=b.
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Fig. 5 Elastic coefficients from the two-phase model.

an abscissa that 1is proportional to the growth of
surface area of the cracks in fig. 3,

S : (cosao- coss )k (37)

where either one crack or two equal cracks of angular
size g hive been used. It should be recalled that the
structural parameter S used in Section 3 is the total
work input/volume less the strain energy density (cf.
equation (6) with S=H.). In the micromechanica)
model, this work-difference is the work of creating
new surface area. Assuming the fracture work/area is
constant, k ~ G_, where G. is the (constant) critical
energy release rate.

The angle 8 and factor k were selected to
produce approximaf%ly the same decrease in cyj(S) as
shown in fig. 2 for very small S and for S=10,
respectively; agreement between theory and experiment
for ¢ atg small § is best when g_is vanishingly
small §{1o‘ ) for the GSCM and when 8° = 0.01 deg for
the two phase model, which are the®values used for
Figs. 4 and 5. By definition £ = c¢y1(0). A study of
the GSCM with ¢ 2 b showed that the closest agreement
with the experimental results was achieved by using
c=b (i.e. no uncracked shell around the inner two-
phase cracked composite); only the latter case is
shown in Fig. 4.

Consider now the prediction of stress and
dilatgtion by means of equations (26) and (33), with

f =¢". The theory in Fig. 6 1is in quite good
3ee T T T T =T T .15
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Fig. 6 Stress and dilatation prediction based on
the generalized self-consistent method with
two cracks.

agreement with the experimental results of Fig. 1
except for dilatation at intermediate pressures. We
assumed there is no gas pressure in the cracks. Of
the four cases in Fig. 4 and 5, the GSCM with two
cracks agrees best with experimental data. The two-
phase model results, Fig. 5, lead to the poorest
prediction because of the poor behavior of €12 and
dcyy/dS, especially at small values of S. For all
four theoretical cases, the magnitude of the
coefficient cy, is well below the experimental result
in Fig. 2. Consequently, the dependence of dilatation
on pressure is not accurately predicted. Referring to
equation (26), it is seen that c,, is a plane-strain
bulk comptiance in that Cop = v/p ¥or =0.

Let us now return %o equation (37) and the
results for the two-crack GSCM in order to relate k to
G. and estimate the value of Ge. The surface area for
two equal-length cracks at a méan radius R is

A= 4nR2(1-cos 8) (38)
The volume of the representative volume elemegt (the

two-phase core in Fig. 3) is approximately 4aR7/3 if
(b-a)/b << 1, and therefore the fracture work/volume




S = 3(cosao- coss)GC/R (39)

showing that k = 3G./R. The value of k = 226 psi
proviges the best ~agreement between theory and
experiment for cyy at S = 10, and was used in
predicting the stress and dilatation curves in Fig. 6;
the predictions depend on dcyy/dS through equation
(33), which could have lead to an optimum k that is
different from that for c | alone. (There is also
weak dependence on the ot%er coefficients and their
derivatives since p:0). For k = 226 psi as well as
8 ~ 0 and a representative 3radius for particles in
s81id propellant of R = 103in (25um), we find G, =
0.08 1b/in (13 J/m“)}. The matrix in the composite
studied here is polyurethane rubber; it is encouraging
that the intrinsic or threshold value of G, is 0.05
Ib/in for an unfilled polyurethane rubber studied
previously (Schapery, 1975). Finally, we note that
8 = 22 deg at ¢ = 0.55 for the predictions in Fig. 6
when p=15; for the case of one crack 8 = 37 deg. When
p>15 the maximum crack angles are smaller.

Although the damaged material is transversely
isotropic, it is of interest to compare the Cij to
those for a fully isotropic material. We find in” the
latter case

c,,= E, Cyp= 1-2v,
11 12 (40)

~Ecy,= 2(1-20) (1) = 3c12-c1§

Observe that ¢ 2" 0.28 at $=10 1in Fig. 2, which
implies for a& isotropic material -c, .t = 0.76;
moreover, -Ec,,/C,.= 3 at Cyp = 1. Both eggerimental
"(Fig. 2) and $heotetical resdlts (Figs. & and 5) show
that the oplane strain bulk compliance c s s
considerably less than that for an isotropic
material. This behavior is consistent with what one
expects physically because the dominant orientation of
microcrack normals is in the direction of axial
stretching. However, the microcrack model, in which
all cracks have an axis of symmetry in the axial
straining dirertion, evhibits ---n greater anisotoopy
than the experimental results. It is likely that an
improvement in the model would be gained by allowing
for a distribution of orientations ¢ of the crack
symmetry axis x, relative to the global material axis
x5, Fig. 7. fLis approach was outlined previously
fgr the two-phase mode) (Schapery, 1987a) and could be
impiement2d using the GSCM; in the latter case, two-
phase cores with different orientations would be

rxy

X1

Fig. 7 Coordinate systems.

embedded in an effective medium. It would be
necessary to account for locally nonaxisymmetric
loading on each two-phase core (cf. eguation 41)).
Another generalization that should yield improved
values of the plane strain bulk compliance is the
introduction of matrix compressibility. Whether or
not the latter generalization alone would be
sufficient to obtain realistic values of Cyo, at least
for overall axisymmetric Toading, is not yet known.

Crack initiation and early growth behavior

The predictions made so far in this section are
based on the assumption that there are either two
equal cracks or one crack in the matrix layer around
each particle prior to loading; but they are very
short (8 < 0.01 deg) prior to loading. We have also
studied the case of two, initially unequal cracks.
With axial straining it was found that the energy
release rate of the shortest crack reached the
critical value first and that only it grows until it
reaches the size of the initially largest crack;
without cracks the highest stresses are at the top and
bottom of the particle in fig. 3. Then, with further
straining, both grow as a pair of equal, stable
cracks. Thus, when two very short cracks pre-exist,
the only situation of practical interest for most of
the available straining range is that of two equal-
size cracks.

The "pre-existing” cracks may be indeed that,
arising during processing, Most, however, probably
develop from the high triaxial tensile stress
concentrations between particles. Early experimental
and theoretical work by Gent and Lindley (1959) showed
that the strength of unfilled rubber in equal triaxial
tension is approximately SEI/6, where E. is the
Young's modulus (at zero strain) of the rubber. This
value was predicted by considering the growth of an
initial, arbitrarily small, spherical void due to
remote, equal triaxial tension. When the tension
reaches and then exceeds 5€./6 the void is predicted
to become unstable (due to a geometric nonlinearity)
and grow without bound. As hypothesized by Williams
and Schapery (1965), when the stress 5E./6 s
approached a Saturn-ring crack forms and then grows
wintii there 1s sufficient loca)l stress relief for
arrest). The smaller the initial cavity is, the
closer the strength is to 5F /6; for cavities on the
order of 10um or less we e§¥imate for the material
stgdied above that the strength is close to this
value.

Recent work by Gent and Wang (1990) shows that
the triaxial strength of rubber is somewhat above this
vaiue when the size of ine cavity is  extremely
smali. The new prediction accounts better than
previously for the high-strain behavior of rubber; it
is believed there is an error in the energy analysis,
stemming from the use of f{nterna} cavity pressure
(instead of external tension) which acts on the
fracture surface, but the general conclusions appear
to be correct. Considering the very high stress in a
real highly-filled composite propellant  with
irregularly-shaped particles, it is reasonable to view
the “pre-existing* cracks in the above analysis as the
arrested Saturn-ring cracks. That the experimentally
observed dflatation is less than the prediction (Fig.
6) at small strains may be, at least in part, due to
the lack of initial cracks until the critical stress
with a value of approximately E,. between particles is
reached.




5. GENERALIZATIONS ICN ATBITRARY STRA(h STATES

Axisymmetric damage

With axisymmetric damage the composite material
is  transversely isotropic. Regardless of the
micromechanical model employed, one may show that the
strain energy density in this case for a linearly
elastic material can always be written in the form

! 2 2
Ho= 3 IAYr Aggel ¢ 2Rppe v+ Agalnyd v v5)

2 9
+ A66(y12 + ES;] (41)
where X3 is the axis of material symmetry and

P I ey = €33 v/3

2¢

VRt fppt f33 0 Y12t ffpp

(42)
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and the five coefficients are elastic moduli
(which depend on the state og cracking or damage).
The strains e.. are the tensor components introduced
in equation (3

The work-conjugate stresses are

o = awo/av = A

v 1Y * Aoy

04t aHO/aed= AIZV + A229d

0 s aNO/aeS= A66eS

(43)
1127 M/ = Rgerp
137 M /avy3= Ay
T23° Mo/3p3" Aggvpg
The virtual work condition &W' = oi,éci., for each
(i,J) pair, yields J ]
21
0,= 3 (o1* 09p* 033)
0337 (o11* 0p)/2 (44)

05= (ogp- 011 }/2
where o.. are the components of the stress tensor in
the x; eJordxnate system. For an isotropic material

= 36 =0

STRILE RY:

A A

(45)
a4” Reg™ G
where K and G are the bulk modulus and shear modulus,
respectively,
= E/3(1-2v) , = £/2(1+v) (46)
In deriving moduli for the micromechanical models

based on the geometry in Fig. 3, we found the form of

and the associated strains in equations (41) and
(32) to be especially convenient. It was the Aj; in
these equations that were developed first using the
two methods discussed in Section 4. Then, by relating
the strains and stresses in equations (42) and (44) to
those in equation (26) (with o /E = ¢), we obtained
the Ciye For reference, the reldtionshios are

2
cppt (R - AppRopdep,
o= (Rypm Aypl3cy, {a7)
-1
Cop™ (2R1p/3 = Ay App/9)

The use of A;. in the micromechanical model not
only simplifies the analysis, but provides some moduli
which are practically independent of damage over the
range studied in Section 4. Namely, as 8 increased
from zero to its maximum value at the strain of 0.55,
we found A /E decreased smoothly from infinity to
ahout un1ty. while A1o and A4, decreased by about 25
and 15 percent respectively. The remaining two
coefficients, and A 6 changed by 7 percent at
most. This resdq% imp11es the energy release rate for
each crack in a two-crack composite core,

ERR : - 3ab° o kT
a(crack area) = 3sing as

(48)

is dominateu by dA,,/ds uniess the dirlatation is very
small relative to t%% other strains. Thus

R 2 dA
v
6sing ds

11

ERR = - (49)
The crack growth condition is ERR = G.; this equation
implies g depends mainly on a scalar 1nvariant. the
dilatation. We may therefore consider the dilatation
to be at least a rough measure of the magnitude of
damage during loading; we have verified this
numerically using both methods in Section 4 for the
case of a specimen 1loaded by axial straining and
pressure. Now, as Aj; scales with £, the initial
Young's modulus, we may write for v 2 0,

8 = function (REvz/G ) (50)

which is an increasing function of the argument; when
v<Q, the condition of constant damage, 8=0, should be
used unless significant healing occurs.

Regardless of whether oniy dA,,/ds or the other
modulus derivatives as well are Jéeded in equation
(48), the material parameters affect the damage
through one dimensionless ratio, RE/G.. A decrease in
radius R or an increase in G reduces the amount of
damage.

The strain energy density W, in equation (48) is
considered to be that for a composite with many
particles, each with two cracks in the example used.
As both W Vo and the total crack surface area are
proportional to the number ot particles, there is no
effect of this number on ERR. Similarly, the
work/volume in equation (39) 1{s independent of the
number of particles. However, both equattons exhibit
dependence on the radius R. With a distribution of
sizes, this radius has to be interpreted as an
‘effective" value for the simplified models
employed. If one wants to exp11c1t1y account for two
or more different sizes, say R,(m=1,2,...), they have
to be explicitly included by using two or more two-
phase composite cores (particle plus rubber layer) in
the effective modulus analysis. Growth of each of the
associated crack angles 8_ obeys equation (48), with
ERR = tach angle 8 r the associated crack area
AE, is %he structural ﬁﬁramater Sp of Section 2 which
obeys equation (3); if area is used, fm = (ERR)p.
However, according to approximate equation (50) for




edln i, ali angles depend pri™irily on one quantity,
the maximum ditatation Vimaxs his mgximum value is the
current vdalue of dila*." _n if v:0 for the entire
loading history. Th s _rere is only one significant
structural parametr ,; we may use as this parameter
the maximum dilatation, the total fracture work W, for
all crdacks (as in Section 2), or any other quantity
which is re.ated in a one-to-one fashion to W,. If,
nowever, vp.. is used the total work Wy will exhibit
some 'ath~ggpendence when v:0 because equation (50) is
n exdct. Therefore, it is better to use S = W
s .Ce_this choice guarantees path-independence of wor
when S’O .

Irn some cases the damage may be axisymmetric
even if the loading is not. Suppose, for example,
A when ca.{ei,, ¢,,) and all shear strains
vé%ish?z Then, %} LII alSﬂe determines the damage
orientation, it will be axisymmetric. In such a case
the experimental results in Section 3 can be used
directly to derive A1 , A22, and AIZ' without a
micromechanical model. %he remaining shear moduli Ay
and A66 have been found from the model to be
insensitive to damage, and thus we may use for them
the snear modulus in the wundamaged state. This
approdch has been usec to predict behavior in simple
snedr from the results in Fig, 2 (Schapery, 1987a).

In general, the axis of isotropy (x3 in Fig. 3j
mdy not be parallel to an axis in thé coordinate
system wused to represent the overall ({applied)
strains. [n order to allow for an arpitrary
crientaticn use

ub o= oeb. xl (51)
where ... are the applied strains referred to
conveniently defined coordinates x!. The relationship
between the strains in eguations 142) and (51) is of
course given by the second-order tensc. transformation

“15° ™ik™ntkn (52)
where m;.; is the cosine of tne angle between the x;

and x', afes. Substitution of equation ({52) into (425

gives - us ko in terms of Lij.

Nonaxisymmetric damage

For a general state of overall stress and strain,
referred to the x; coordinates,

Y157 Btk (53)
{f the damage is axisymmetric and we use x;= x,, the
associated moduli Bi‘ may be easily expressed in
terms of the five Ai~J§& equation (43). As B:, is
a fourth-order tensoﬂ. we may then predict it1ﬂg& any
orientation of x.. Both the GSCM and two-phase model
discussed in Section 4 can be used to predict B!.k
with nonaxisymmetric damage. [t may be acceptab?é to
assume each crack is axisymmetric (thus simplifying
the two-phase core analysis) as long as one includes
cores with different symmetry axis orientations
vpe b, (cf. Fig, 7). If the second method of Section
47 s used, which is based on the two-phase compasite
(r<b), the global strain energy density will consist
of a sum of strain energies, each having the form of
equation (41), but with the strains ¢.. expressed in
terms of L%. and the axis orientation tﬂ*ough equation
(52). TheJN0 for the two-phase core in the GSCM is
similar to that in equation (41), but is expressed in
terms of local boundary displacements instead of the
overall strains (Schapery, 1986).

If an overall strain history is imposed for which

the orientation of the maximum principal strain is not
fixed, one will have to 1include composite core
orientations that reflect this history. Suppose, for
example, the principal strain orientations do not
change, but at one time or another each principal
strain has the largest value and it is large enough to
produce a family of cracks. In general, the composite
will be orthotropic, and the moduli will depend on at
least three structura! parameters, one s (or S) for
each principal direction. The two-phase core in Fig.
3 is simple enough that one can predict the crack face
displacements, and thus readily introduce constraints
which prevent crack-face overlap when necessary.

Different types of damage may be introduced. If
the loading is like that discussed in Section 3, but
the axial strain is compressive instead of tensile,
the damage will be axisymmetric, but the crack axis
will be normal to the straining axis. A reasonable
description for this damage may be a belt-like crack
that encircles the particle about the vertical axis.
The strain energy density of a composite ccre with
such a «crack can be weasily derived using the
previously developed perturbation scluticn {Schapery,
1986).

CONCLUSIONS

A thermodynamically based theory of mechanical
state behavior with damage growth was reviewed and
then successfully applied to a filled rubber under
axisymmetric loading. The analysis proved to be quite
simple because of the path-independence of work (the
work potential) and the reguirement of only one
structural parameter (or internal state variable}.

Two different micromechanical models were then
used to relate overall composite behavior to
microcracking and associated material parameters,
including filler size; the amount of damage is a
function of these parameters through one dimensionless
ratio, RE/G., where R 1is a characteristic particle
size, £ is the initial Young's modulus, and Gc is the
critical energy release rate for microcracks. The
model based on the generalized self-consistent method
(GSCM), which is a special case of the thermodynamic
theory, agrees best with the experimental results.

In view of these encouraging results, it is
believed desirable to extend the GSCM to predict
damage orientation and growth as well as overal)
mechanical behavior under general strain states. With
damage localization, such as the growth of a
macrocrack in the damaged continuum, the theory should
sti1l apply except where there are high strain
gradients, such as near the macrocrack edge. Then, as
long as the work potential theory is applicable to the
continuum, the J integral will be applicable as a
macrocrack characterizing parameter 1in many cases
(Schapery, 1987b). Viscoelastic effects may be easily
incorporated in the theory wusing approximations
described elsewhere (Schapery, 1990b).

ACKNOWLEDGMENT

Sponsorship of this work by the Office of Naval
Researcn is gratefully acknowledged.

REFERENCES

Christensen, R.M., 1990, "A Critical Evaluation for
a Class of Micromechanics Moadels," Journal of the
Mechanics and Physics of Solids, Vol. 38, pp. 379-404.

Cornwell, L.R. and Schapery, R.A., 1975, "SEM Study
of Microcracking in Strained Solid Propeilant,”
Metallography, Vol. 8, pp. 445-452.




Farris, R.J., 1968, "The Character of the Stress-
Strain Function for Highly filled Elastomers,”
Transactions of the Society of Rheclogy, Voi. 12:2,
pp. 303-314.

Gent, A.N., and Lindley, P.B., 1959, "Interna!
Rupture of Bonded Rubber Cylinders in Tensign,”
Proceedings of the Roya! Society A, Vo!. 249, p. 195

Gert, A.N, and wWang, C., 1980, "Fracture Mecharics
and Cavitation in Rubberlike Solids,"” Journa' of
Materia's Science, in press. Also pubdbiished as a
university of Akron report.

Hasrin, l., 1962, “The Elastic Moduli of
Heterogeneous Materials,* Journal of Applied
Mechanics, Vol. 29, pp. 143-150.

Krajcinovic, 0. and Lemaitre, J., 1987, (Contimuum
Darage Mechanics, Theory and Applications, Springer-
veriag, New York-Wien,

Mullins, L., 1969, “Softening of Rubber by
Deformation," Rubber Chemistry Technology, Vol. 42,
pp. 339-3€2.

Scrapery, R.A., 1975, "A Theory of Crack Initiation
and Growth in Vviscoelastic Megia IIf,” Internmationeal
ccymna) of Fracture, Vol. 11, pp. 548-562.

Scnapery, R.A,, 1982, "Models for Damage Growth ang
rracure in  Nonlinear Viscoelastic Particulate
Composites," Proceedings, Ninth U.S. National Congress
of Applied Mechanics, The American Society of
Mecnarical Fnagineers, Book No. HO0228, p. 237-245,

Schapery, R.A,, 1986, "A Micromecharical Mogel for
Nonlinear Viscoelastic Behavior of Particle-Reinforced
Rubber With Distributed Damage," Engineering Fracture
Mecharics, Vol. 25, pp. 845-867.

Scrapery, R.A., 1987a, “Nonlinear Constitutive
Geations for Solid Propellant Based on a wWork
ctential and Micromechanical Model,” Proceecings,
987  JANNAF  Structures and Mechanica' Berav:icr
Subcommittee Meeting, CPIA. Also Texas A&M Report MM
£483-87-4.

Schapery, R.A., 1987b, *“Deformation and Fracture
Cnaracterization of Inelastic Composite Materia's
Using Potentials,"Polymer fngineering and Science”,
vo'. 27, pp. 63-76.

Schapery, R.A., 198%a, "Mechanical Characterization
anc Anglysis of Inelastic Composite Laminates with
Growing Damage," Mechanics of Composite Materials angd
Structures, AMD-Vol. 100, The American Society of
Mechanical Engineers, pp. 1-9.

Schapery, R.A., 1983b, “Models for the Deformation
Benavior of Viscoelastic Media with Distributed Jamage
and  Their Applicability to lIce," Proceedings,
IUTAM/TAHR Symposium on Ice/Structure Interaction, St.
John's, Newfoundiand, August 1989, in press.

Schapery, R.A., 1990a, "A Theory of Mechanical
Behavior of Elastic Media with Growing Damage and
Other Changes in Structure," Journal of the Mechanics
and Physics of Solids, Vol. 38, pp. 215-253.

Schapery, R.A., 1990b, “Simplifications in the
Behavior of Viscoelastic Composites with Growing
Damage," Proceedings, IUTAM Symposium on Inelastic
Deformation of Composite Materials, May 29-June 1,
1990, 1in press. Also published as Texas A&M Report
No. 27010-90-8.

Swanson, S.R., 1983, "A Constitutive Formuiation for
High-tlongation Propellants," J. Spacecraft and
Rockets, Vol. 20, p. 559

Williams, M.L. and Schapery, R.A., 1865, "Spherical
Flaw Instability in Hydrostatic Tension,"
International Journal of fracture, Vol. 1, pp. 64-72.

—~ um

10




